58 research outputs found

    Elastic Allocation of Docker Containers in Cloud Environments

    Get PDF
    Abstract Docker containers wrap up a piece of software together with everything it needs for the execution and enable to easily run it on any machine. For their execution in the Cloud, we need to identify an elastic set of virtual machines that can accommodate those containers, while considering the diversity of their requirements. In this paper, we briefly describe our formulation of the Elastic provisioning of Virtual machines for Container Deployment (EVCD), which takes explicitly into account the heterogeneity of container requirements and virtual machine resources. Afterwards, we evaluate the EVCD formulation with the aim of demonstrating its flexibility in optimizing multiple QoS metrics

    The evolutionary history and functional divergence of trehalase (treh) genes in insects

    Get PDF
    Trehalases (treh) have been found in different organisms, such as bacteria, fungi, yeast, nematodes, insects, vertebrates and plants. Their biochemical properties are extremely variable and not yet fully understood. Gene expression patterns have shown differences among insect species suggesting a potential functional diversification of trehalase enzymes during their evolution. A second gene family encoding for enzymes with hypothetical trehalase activity has bene been repeatedly annotated in insect genome as acid trehalases/acid trehalase-like (ath), but its functional role is still not clear. The currently available large amount of genomic data from many insect species may enable deeper studies allowing a better understanding of the evolutionary history, the phylogenetic relationships and possible roles of trehalase encoding genes in this taxon. The aim of the present study is to infer the evolutionary history of trehalases and acid trehalase genes in insects and analyse the trehalase functional divergence during their evolution, combining nucleotides sequences phylogenyphylogenetic, protein conservation and genomic synteny/colinearity analyses

    On the Role of Affective Properties in Hedonic and Discriminant Haptic Systems

    Get PDF
    Common haptic devices are designed to effectively provide kinaesthetic and/or cutaneous discriminative inputs to the users by modulating some physical parameters. However, in addition to this behavior, haptic stimuli were proven to convey also affective inputs to the brain. Nevertheless, such affective properties of touch are often disregarded in the design (and consequent validation) of haptic displays. In this paper we present some preliminary experimental evidences about how emotional feelings, intrinsically present while interacting with tactile displays, can be assessed. We propose a methodology based on a bidimensional model of elicited emotions evaluated by means of simple psychometric tests and statistical inference. Specifically, affective dimensions are expressed in terms of arousal and valence, which are quantified through two simple one-question psychometric tests, whereas statistical inference is based on rank-based non-parametric tests. In this work we consider two types of haptic systems: (i) a softness display, FYD-2, which was designed to convey purely discriminative softness haptic stimuli and (ii) a system designed to convey affective caress-like stimuli (by regulating the velocity and the strength of the “caress”) on the user forearm. Gender differences were also considered. In both devices, the affective component clearly depends on the stimuli and it is gender-related. Finally, we discuss how such outcomes might be profitably used to guide the design and the usage of haptic devices, in order to take into account also the emotional component, thus improving system performance

    A PoW-less Bitcoin with Certified Byzantine Consensus

    Full text link
    Distributed Ledger Technologies (DLTs), when managed by a few trusted validators, require most but not all of the machinery available in public DLTs. In this work, we explore one possible way to profit from this state of affairs. We devise a combination of a modified Practical Byzantine Fault Tolerant (PBFT) protocol and a revised Flexible Round-Optimized Schnorr Threshold Signatures (FROST) scheme, and then we inject the resulting proof-of-authority consensus algorithm into Bitcoin (chosen for the reliability, openness, and liveliness it brings in), replacing its PoW machinery. The combined protocol may operate as a modern, safe foundation for digital payment systems and Central Bank Digital Currencies (CBDC)

    Towards a Novel Generation of Haptic and Robotic Interfaces: Integrating Active Physiology in Human-Robot Interaction

    Get PDF
    Haptic interfaces are special robots that interact with people to convey touch-related information. In addition to such a discriminative aspect, touch is also a highly emotion-related sense. However, while a lot of effort has been spent to investigate the perceptual mechanisms of discriminative touch and to suitably replicate them through haptic systems in human robot interaction (HRI), there is still a lot of work to do in order to take into account also the emotional aspects of tactual experience (i.e., the so-called affective haptics), for a more naturalistic human-robot communication. In this paper, we report evidences on how a haptic device designed to convey caress-like stimuli can influence physiological measures related to the autonomous nervous system (ANS), which is intimately connected to evoked emotions in humans. Specifically, a discriminant role of electrodermal response and heart rate variability can be associated to two different caressing velocities, which can also be linked to two different levels of pleasantness. Finally, we discuss how the results from this study could be profitably employed and generalized to pave the path towards a novel generation of robotic devices for HRI

    Design and preliminary affective characterization of a novel fabric-based tactile display

    Get PDF
    In this work we present a novel wearable haptic system based on an elastic fabric which can be moved forward and backward over the user forearm thus simulating a human caress. The system allows to control both the velocity of the “caress-like” movement, by regulating motor velocity, and the “strength of the caress”, by regulating motor positions and hence the force exerted by the fabric on the user forearm. Along with a description of the mechanical design and control of the system, we also report the preliminary results of psycho-physiological assessment tests performed by six healthy participants. Such an assessment is intended as a preliminary characterization of the device capability of eliciting tactually emotional states in humans using different combinations of velocity and caress strength. The emotional state is expressed in terms of arousal and valence. Moreover, the activation of the autonomic nervous system is also evaluated through the analysis of the electrodermal response (EDR). The main results reveal a statistically significant correlation between the perceived arousal level and the “strength of the caress” and between the perceived valence level and the “velocity of the caress”. Moreover, we found that phasic EDR is able to discern between pleasant and unpleasant stimuli. These preliminary results are very encouraging and confirm the effectiveness of this device in conveying emotional-like haptic stimuli in a controllable and wearable fashion

    Evaluation of Glucose Uptake in Normal and Cancer Cell Lines by Positron Emission Tomography.

    Get PDF
    To date, there is no definitive demonstration of the utility of positron emission tomography (PET) in studying glucose metabolism in cultured cell lines. Thus, this study was designed to compare PET to more standardized methods for the quantitative assessment of glucose uptake in nontransformed and transformed living cells and to validate PET for metabolic studies in vitro. Human colon and breast carcinoma cell lines and mouse embryo fibroblasts were evaluated for [ 18 F]fluorodeoxyglucose ([ 18 F]FDG) uptake by PET and autoradiography and 2-deoxyglucose (2-DG) incorporation by colorimetric assay and analyzed for the radiotoxic effects of [ 18 F]FDG and the expression levels of glucose transporters. Indeed, [ 18 F]FDG incorporation on PET was comparable to [ 18 F]FDG uptake by autoradiography and 2-DG incorporation by colorimetric assay, although radiotracer-based methods exhibited more pronounced differences between individual cell lines. As expected, these data correlated with glucose transporters 1 to 4 and hexokinase II expression in tumor cell lines and mouse fibroblasts. Notably, [ 18 F]FDG incorporation resulted in low apoptotic rates, with fibroblasts being slightly more sensitive to radiotracer-induced cell death. The quantitative analysis of [ 18 F]FDG uptake in living cells by PET represents a valuable and reproducible method to study tumor cell metabolism in vitro, being representative of the differences in the molecular profile of normal and tumor cell lines

    Complexity and action for warped AdS black holes

    Get PDF
    The Complexity=Action conjecture is studied for black holes in Warped AdS3 space, realized as solutions of Einstein gravity plus matter. The time dependence of the action of the Wheeler-DeWitt patch is investigated, both for the non-rotating and the rotating case. The asymptotic growth rate is found to be equal to the Hawking temperature times the Bekenstein-Hawking entropy; this is in agreement with a previous calculation done using the Complexity=Volume conjecture

    4-Chloro-N-(4-chloro­phenyl­sulfon­yl)-N-(3-oxo-2,3-dihydro-1,2-benzisothia­zol-2-yl)benzene­sulfonamide

    Get PDF
    In the title compound, C19H12Cl2N2O5S3, the benzene rings of the chloro­phenyl­sulfonyl groups form a dihedral angle of 35.85 (8)° and are inclined at angles of 23.51 (6) and 59.22 (6)° with respect to the essentially planar benzisothia­zole ring system [maximum deviation = 0.030 (2) Å]. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond. In the crystal packing, mol­ecules are linked into chains parallel to the a axis by inter­molecular C—H⋯O hydrogen bonds and π–π stacking inter­actions, with centroid–centroid distances of 3.592 (5) Å
    corecore